

Demonstrationsexperimente zum Doppler-Effekt

Protokoll zur Smartphone-App "Phyphox"

Dieses Dokument wurde 2017 von Studierenden der Universität Salzburg/AG Didaktik der Physik im Auftrag der Christian Doppler Wissensund Experimentierplattform (<u>https://www.christian-doppler.net</u>) erstellt. © Christian Doppler Plattform, Inhalt <u>lizenziert unter CC BY-SA 4.0 international</u>

Unterstützt durch das Land Salzburg

Projektkoordination CD-Plattform

Protokoll zur Smartphone-App "Phyphox"

Aufbau der App

Nach dem Herunterladen der App auf das Smartphone und dem Start eben dieser, hat man Zugriff auf Experimente zu folgenden Kategorien:

Das Informationssymbol oben in der Ecke ermöglicht den Zugriff auf:

- Credits
- Experiment-Ideen und Anleitungen
- Häufig gestellte Fragen
- Hilfe zum Fernzugriff

Alle diese Punkte verlinken auf die PhyPhox.org-Seite. Hier können auch weitere Informationen wie News oder der Editor aufgerufen werden.

Abb. 2: Informationssymbol

Öffnet man eines der angebotenen Experimente, kann man über das Symbol rechts oben in der Ecke einen Reiter aufmachen, der einige zusätzliche Optionen öffnet.

Abb. 3: Zusatzfenster bei den Versuchen

• Experiment Info gibt eine Beschreibung des Experiments, sowie eventuell noch zusätzlich benötigte Geräte für diesen Versuch. Zudem wird ein Link zur englischen PhyPhox-Wiki-Seite gegeben, auf der das Experiment noch einmal ausführlich erklärt wird, mit benötigten Materialien, Aufbau, Auswertung und Lösungen für gängige Probleme.

• Daten exportieren ermöglicht, die gemessenen Werte in verschiedenen Dateiformaten (Excel und verschiedene CSV) zu senden. Daraus kann man dann selbst die Diagramme auf dem Computer erstellen und mit ihnen weiterarbeiten.

• Screenshot teilen versendet einen Screenshot, um mit diesem beispielsweise grobe Rechnungen zu machen oder Einstellungen zu teilen.

- Zeitautomatik: Hier kann die Startverzögerung und die Dauer des Experiments festgelegt werden. Dies ermöglicht schönere Graphen, wenn ein Ausrichten des Smartphones vor dem Experiment nötig ist, aber nicht aufgenommen werden soll.
- Fernzugriff erlauben: Hiermit kann freigegeben werden, dass die App von einem anderen Gerät aus bedient werden kann. Dies ermöglicht eine Verwendung der App, auch wenn das Smartphone zum Bedienen während des Messens nicht zugänglich ist. Hierfür müssen beide Geräte im selben Netzwerk sein, am meisten bietet sich ein mobiler Hotspot des Smartphones an. Um die App per Fernzugriff steuern zu können, muss die URL, die am Messgerät (Smartphone) angezeigt wird, am Bediengerät eingegeben werden. Zudem ermöglicht es ein sofortiges Herunterladen der Messdaten, ohne sie verschicken zu müssen.
- Daten löschen: dies löscht alle gemessenen Werte. Die Einstellungen bleiben aber erhalten.

Versuch zum Dopplereffekt:

	kt	▶ :
EINSTELLUNGEN ERGEBNISSE		
Grundfrequenz	1000.0	Hz
Frequenzspanne	10.0	Hz
Zeitintervall	50.0	ms
Schallgeschwindigkeit	340.0	m/s
Zeitintervall gibt an, mit welcher Rate und mit wie vielen Daten eine Geschwindigkeit bestimmt wird. Der Algorithmus wird die Frequenz um die Grundfrequenz innerhalb von -Frequenzspanne und +Frequenzspanne suchen. Dabei verwendet er die n-te Periode der		

Grundfrequenz (siehe unten). Zu extreme Einstellungen für das Zeitintervall oder die Spanne führen zu ungenauen Ergebnissen oder könnten für das Handy zu aufwändig werden. Außerdem sollte die Spanne deutlich kleiner sein als 1/Zeitintervall. n-te Periode **49.00**

Abb. 4: Einstellungsfenster des Dopplereffekts

Auf der Startseite des Dopplerexperimentes ("Einstellungen") können verschiedene Parameter eingestellt werden und es gibt eine kurze Beschreibung dieser Werte.

Zur Durchführung des Experiments wird zusätzlich ein Tongenerator benötigt. Dies kann auch ein zweites Smartphone mit PhyPhox sein. Wichtig dabei ist, dass die Frequenz des Generators konstant ist und vor dem Beginn des Experiments beim Messgerät unter "Grundfrequenz" eingegeben wird.

Zudem ist ein ruhiger Raum von Vorteil, da störende Nebengeräusche wie Reden oder Motorgeräusche das Experiment verfälschen können.

Mit Beginn der Messung werden im zweiten Reiter "Ergebnisse" zwei Graphen erstellt. Der obere Graph gibt die gemessene Frequenz [Hz] zur Zeit t [s] an, das untere Diagramm zeigt die Geschwindigkeit [m/s] zur Zeit t [s] an.

Test des Dopplereffekts der App:

Abb. 5: Versuchsaufbau zum Test des Dopplereffekts

Material:

- 2 Smartphones
- Stativ mit Stativklemme und Halterung (rechts im Bild)
- Drehteller mit Halterung (links im Bild)

Versuchsaufbau und Durchführung:

Das Smartphone, das den Ton aussendet, wird in die Halterung am Drehteller gespannt und eine konstante Frequenz eingestellt. Das Smartphone, auf dem der Dopplereffekt von PhyPhox geöffnet ist, wird am Stativ auf derselben Höhe wie das andere Smartphone befestigt.

Dann werden die Einstellungen aus Abb. 7 bzw. 9 im Einstellungsfenster eingegeben, zudem wird eine Zeitautomatik eingestellt, um das Anlaufen des Versuchs nicht aufnehmen zu müssen.

Mit dem Start des Tongenerators und des Dopplereffekts wird das Smartphone am Drehteller angedreht und mit einer möglichst konstanten Geschwindigkeit gedreht. Dabei werden die Graphen aus Abb. 6 bzw. 8 erstellt.

Abbildung 6: Ergebnissgraphen des 1. Tests

Abbildung 7: Eingestellte Werte im Modus Dopplereffekt/Einstellungen beim 1. Test

Abbildung 8: Ergebnissgraphen des 2. Tests

Werte der Einstellung:	
Frequenz: 1000 Hz	
Frequenzspanne: 10 Hz	
Zeitinterval: 50 ms	
Schallgeschwindigkeit: 340 $m_{/s}$	

Abbildung 9: Eingestellte Werte im Modus Dopplereffekt/Einstellungen beim 2. Test Berechnung der Geschwindigkeit der Quelle:

geg.:

ges.: v_Q

- $f_S = 1000 \, Hz$
- $f_E = 1005 \, Hz$ $v = 340 \, m/_S$

Formel \rightarrow Dopplereffekt \rightarrow Quelle bewegt sich und Empfänger ruht:

$$f_E = f_s \cdot \frac{1}{1 \pm \frac{v_s}{v}}$$

Durch Umformen auf v_S erhält man:

$$1 - \frac{v_S}{v} = \frac{f_S}{f_E}$$
$$\frac{v_S}{v} = 1 - \frac{f_S}{f_E}$$
$$v_S = \left(1 - \frac{f_S}{f_E}\right) \cdot v$$

Setzt man nun die Zahlenwerte in die Gleichung ein erhält man für v_S :

$$v_S = 1,69 \, m/_S$$

Überprüfung der Geschwindigkeit über Bestimmung der Winkelgeschwindigkeit:

Messung der Zeit für eine Umdrehung:

Mit Hilfe der akustischen Stoppuhr von Phyphox wird die Rundenzeit des Smartphones gemessen. Aus den 5 Messwerten ergibt sich ein Mittelwert von t = 0.77s.

Der Radius bei diesem Experiment beträgt r = 21cm.

Berechnung der Geschwindigkeit folgt aus:

$$v = \omega \cdot r = \frac{\Delta \varphi}{\Delta t} \cdot r$$

Durch Einsetzen der Zahlenwerte erhält man für $v = 1,71 \, m/_S$.

Unter Berücksichtigung von eventuellen Messfehlern decken sich die beiden Werte sehr gut.

Die Geschwindigkeitsberechnung durch Phyphox ist somit sehr genau.

Abb. 10: Rundenzeit des gedrehten Smartphones

Berechnung der Frequenz des Empfängers:

geg.:

ges.:
$$f_E$$

•
$$f_S = 1000 \, Hz$$

•
$$v_S = 2 \frac{m}{S}$$

• $v = 340 \ m/_{s}$

Formel \rightarrow Dopplereffekt \rightarrow Quelle bewegt sich und Empfänger ruht:

$$f_E = f_S \cdot \frac{1}{1 \pm \frac{v_S}{v}}$$

Setzt man nun die Zahlenwerte in die Gleichung ein erhält man für f_E :

$$f_E = 994,15 Hz$$

Zusätzliches/Tipps

-nicht alle Handys haben alle Sensoren zur Verfügung

-Warnhinweis beim Starten der App

Abb. 11: Warnungsfenster beim Start der App

-Die App wurde von der Universität Aachen entwickelt, unter der Leitung von Sebastian Kuhlen. Sie bietet vielfältige Einsatzmöglichkeiten für physikalische Experimente.

-> phyphox.org/de/home-de